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The purpose of this project was to determine whether flowing space (specifically, the resultant 
anisotropy of light propagation) produces noticeable errors in GPS signal travel times (particularly 
between signals from satellites at different zenith angles) if the GPS is designed to assume that the 
speed of light is isotropic and equal to c. 

Theory  
In Figure 1, we consider a GPS receiver (REC) on the surface of the Earth receiving signals from two GPS 
satellites: One directly above the receiver (S1) and another on the horizon (S2). The orbital radii of the 
GPS satellites is 𝑑𝑑 = 26,600 𝑘𝑘𝑘𝑘; the radius of the earth is 𝑅𝑅 = 6371 𝑘𝑘𝑘𝑘; and the distance to the 
satellite on the horizon is 𝑋𝑋𝑑𝑑 = √(𝑑𝑑2 − 𝑅𝑅2). The center of the earth is the origin of a Cartesian 
coordinate system (x,y). 

 

Figure 1 Geometry of the problem. S1 and S2 are GPS satellites communicating with the receiver REC on the Earth. 

At the same time, the Earth lies in the center of a radial spatial inflow field given by (1) 
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Light moves at c relative to space; that is, if 𝒗𝒗  is the velocity of a light signal relative to Earth, then (2) 



||𝒗𝒗 − 𝒘𝒘|| = 𝑐𝑐 

The travel time of the signal from S1 (travelling downwards to Earth) is therefore (3) 
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To find the travel time of the signal from S2, require that 𝒗𝒗 is parallel to the -x-axis at all times; that is,   

𝒗𝒗 =  −𝑣𝑣 𝒙𝒙� 

where 𝑣𝑣 ≥ 0. 

From these equations we find 
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Then (4) 
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Figure 2 Geometrical origin of the formula for v. 

The quantity of interest is the difference between T2 and T1. However, we must first correct T2 for the 
difference between the geometrical receiver-signal distances for T1 and T2. This difference is 
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𝛿𝛿𝛿𝛿 = 𝑋𝑋𝑑𝑑 − (𝑑𝑑 − 𝑅𝑅) = �𝑑𝑑2 − 𝑅𝑅2 − (𝑑𝑑 − 𝑅𝑅) 

The GPS technician is presumably unaware of the Earth’s spatial flow field and instead assumes that 
light travels at c in all directions relative to the Earth. Therefore, he would correct for the difference 
𝛿𝛿𝛿𝛿 by subtracting 𝛿𝛿𝛿𝛿/𝑐𝑐 from the difference 𝑇𝑇2 − 𝑇𝑇1 to obtain (5) 

𝛿𝛿𝛿𝛿 = (𝑇𝑇2 −  𝛿𝛿𝛿𝛿/𝑐𝑐) − 𝑇𝑇1 

Calculation 
To evaluate T1, I integrated equation (3) using Mathematica (it can also be integrated by hand, 
however). The result was 

𝑐𝑐𝑐𝑐1 =  20,228.50337 𝑘𝑘𝑘𝑘 

For comparison, the travel time 𝑇𝑇10 with no flow (that is, if the signal travels at c) is 

𝑐𝑐𝑐𝑐10 = 𝑑𝑑 − 𝑟𝑟 = 20,229.0000 𝑘𝑘𝑘𝑘 

Calculating T2 is much more complicated. I calculated T2 using two different methods: first, by directly 
numerically integrating equation (4) in Mathematica. The result was 

𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐2 − 𝛿𝛿𝛿𝛿 − 𝑇𝑇1 = 0.0016367 𝑚𝑚 = 1.6367 𝑚𝑚𝑚𝑚 

To ensure the precision of this (and all other) calculations, I used the MaxPrecision and MinPrecision 
settings in Mathematica (with values of 100 and 40, respectively). 

For the second method, I calculated the first 3 terms of the Taylor expansion of the integrand 1
𝑣𝑣
 for T2 

(by hand and by Mathematica to confirm its veracity). These are (6) 
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where 𝑢𝑢 = 𝑤𝑤/𝑐𝑐 is dimensionless. In Cartesian coordinates, this becomes 
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The terms are the same as in the first equation, in order. 

I then integrated the above equation. I was able to integrate each term analytically except for the third 
one (corr. to 𝑢𝑢2). I evaluated each term separately, denoting 

𝑇𝑇2 = 𝑇𝑇20 + 𝑇𝑇21 + 𝑇𝑇22 + 𝑇𝑇23 



in the same order as the previous equations. I found that 𝑇𝑇23 is totally negligible, while the other terms 
have values 

𝑇𝑇20 =
𝑋𝑋𝑑𝑑
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𝑇𝑇21 = −1.65547 × 10−6𝑠𝑠 =  −496.641 𝑚𝑚/𝑐𝑐 

𝑇𝑇22 = 4.808 × 10−11𝑠𝑠 = 1.442 𝑐𝑐𝑐𝑐/𝑐𝑐 

The result is therefore (calculated both by hand and with Mathematica) 

𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐(𝑇𝑇2− 𝑇𝑇1) − 𝛿𝛿𝛿𝛿 ≈ 𝑐𝑐(𝑇𝑇21 + 𝑇𝑇22 − 𝑇𝑇1) − (𝑑𝑑 − 𝑟𝑟) = 1.7 𝑚𝑚𝑚𝑚 

Examining the corrections more closely, one notices that by far the greatest part of the correction is  
from 𝑇𝑇21. Moreover, from equation (6) it is clear that 𝑇𝑇21is exactly equal to the (approximate) 
contribution from 𝑤𝑤𝑥𝑥 (that is, the contribution from w along the direction of the signal) alone. Note that 
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The first term here is the 0th (constant) Taylor term (= 1/c) and the second term is the linear Taylor 
correction(which becomes 𝑇𝑇21after integration). 

To confirm my suspicion that the contribution from 𝑤𝑤𝑦𝑦 is negligible and the signal travels as if it was only 
being carried along by 𝑤𝑤𝑥𝑥, I calculated (rather unnecessarily in view of the above equation) 
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which, as I suspected, is almost identical to the exact result. 

One way of understanding why 𝑤𝑤𝑦𝑦contributes so little (primarily to the very small quadratic Taylor term 
T22) is to observe that, when one subtracts two quantities a,b geometrically (i.e. as the sides of a right 
triangle) rather than linearly, if a >> b then the geometric subtraction enormously reduces the effect of 

subtracting b: √𝑎𝑎2 − 𝑏𝑏2 ≈ 𝑎𝑎 �1 − 𝑏𝑏2
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Discussion 
The diminutive size of the error induced in the GPS transit times by Flowing Space can be understood as 
resulting from 5 factors: 

1. 𝑤𝑤 ≪  𝑐𝑐. (This is not sufficient, of course, because the difference in T2 between the FS and non-
FS cases is 500 meters.) 

2. Since 𝑅𝑅 ~ 𝑑𝑑/4, the signal from the horizon satellite S2 propagates mostly along (with) the radial 
flow lines for most of the trip. 



3. The vertical ether component subtracts orthogonally/geometrically from v, while the horizontal 
component adds linearly. Combined with (1), this means that the effect of 𝑤𝑤𝑦𝑦 is reduced by the 

factor 
𝑤𝑤𝑦𝑦

𝑐𝑐
≤ 10−4 compared to the effect of 𝑤𝑤𝑥𝑥 .  

4. The GPS technician corrects for the geometrical signal travel distance as if the signal propagates 
at c, when in fact it propagates at greater than c for most of the trip. This effectively ‘removes’ 
part of the trip where the signal is propagating at approximately or less than c (near the Earth, 
at r <10,000 km), leaving only the larger portion of the trip where the signal’s velocity is more 
similar to that of the overhead signal. 

5. The difference in 𝑤𝑤 between r = d and r = R is only a factor of 2: 5.5 km/s vs. 11.2 km/s. 

These same factors will most likely constrain Flowing Space-related errors in VLBI distance 
measurements to only a few mm as well – again, contrary to what one would expect. And indeed, this 
webpage www.cpi.com/projects/vlbi.html states that VLBI signal travel distances can be accurate ‘down 
to a few mm’. 

Future work 
I should repeat the above calculation for GPS satellites at arbitrary angles. To make it quick (and possibly 
find an analytical expression), I can start by just setting the signal propagation speed equal to 
𝑣𝑣 = 𝑐𝑐 + 𝒘𝒘 ⋅ 𝒗𝒗/||𝑣𝑣||. 

 

Appendix 1: Two-way Earth to Overhead Satellite travel time residual 
I also calculated the travel time 𝑇𝑇𝑢𝑢𝑢𝑢 for a signal propagating up against the ether flow, from the receiver 
to an overhead GPS satellite. I then compared this with 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑇1 and 𝑇𝑇0 = (𝑑𝑑 − 𝑅𝑅)/𝑐𝑐. I found 

𝑐𝑐(𝑇𝑇𝑢𝑢𝑢𝑢 − 𝑇𝑇0) ≈ −𝑐𝑐(𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑇𝑇0) ≈ 496 𝑚𝑚 

𝑐𝑐(�𝑇𝑇𝑢𝑢𝑢𝑢 − 𝑇𝑇0� − |𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑇𝑇0|) ≈ 2.4 𝑚𝑚𝑚𝑚 

In “Relativity in the Global Positioning System” (2003) by Neil Ashby, the author states that errors in the 
two-way (?) travel time from the receiver to the GPS of 2 cm or less “can be neglected for most 
purposes”, and also that the Shapiro delay usually adds up to 2 cm or less (which I confirmed using the 
formula in the paper with the parameters for an overhead GPS satellite). 

Mathematica filename: twowayGPSlinkdelay.nb 

Appendix 2: FS-induced errors in the VLBI imaging system 
Incidentally, for two VLBI receivers situated 90° apart on the circumference of the Earth, the calculation 
for the FS-induced difference in signal arrival times is identical to the main calculation of this paper, 
except with  𝑑𝑑 replaced by the size of the entrainment sphere (i.e. the spatial flow field) of the Earth. 

http://www.cpi.com/projects/vlbi.html


Using the Taylor series expansion program with 𝑑𝑑 ≈ 2.7 × 1010𝑚𝑚, I found that the difference in signal 
arrival times due to Flowing Space is 

𝑐𝑐𝑐𝑐 = 2.4 𝑚𝑚𝑚𝑚 

However, the ‘exact’ calculation produced bizarrely large results – closer to 500 m – which increased by 
factors of 10 if I increased the distance greatly. This is highly implausible, so I am trying to confirm that 
the ‘exact’ program is malfunctioning. 

Note that according to the website http://www.cpi.com/projects/vlbi.html, the accuracy of the VLBI 
system is indeed “a few millimeters”, as which is consistent with the flowing space prediction above. 
Note also that the relative positions of the VLBI receivers in my calculation is probably optimized to 
produce the largest FS residual. 

Mathematica filename: “shapiroGPScalculation(alteredforVLBI).nb” 

 

Appendix 3: The Shapiro Time Delay 
To calculate the Shapiro time delay of a signal passing the sun from Earth to Venus and back, one needs 
only a slightly modified version of the calculation of T2 in the main text.  The main difference is the limits 
of integration: the distance Xd becomes the distance between the Sun and the source/receiver. Also, 
one needs to do a separate integral for the parts of the trip where the signal is traveling against the 
flow, because the velocity as a function of distance is different: 

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  −𝑤𝑤𝑥𝑥 + �𝑐𝑐2 − 𝑤𝑤𝑦𝑦2 

To include the effects of passing through the Earth’s and Venus’ flow fields, one needs the calculation 
from Appendix 1 of the time delay for that two-way trip (but with the “GPS satellite radius” extended to 
the radius of the entrainment sphere). It turns out that those effects are negligible (about 10−10 
seconds each), as one would expect. 

My result: 

Reflection from Venus: Δ𝑇𝑇 = 0.00021377 seconds 

Reflection from Mercury: Δ𝑇𝑇 = 0.000201435  

in good agreement with Shapiro’s calculation (which was measured to be within − 20% of his calculated 
2.0 × 10−4 s). If I exclude the influence of the Earth and Venus’/Mercury’s entrainment fields, I get the 
same answer. 

Update: It looks like Richard Benish has done the same calculation the exact same way as me (but with 
the reflector being Mars and neglecting the Earth’s and Mars’ flow fields) in the “Shapiro-Reasenberg 

http://www.cpi.com/projects/vlbi.html


Experiment” section of his article “Light and Clock Behavior in the Space Generation Model of 
Gravitation”, and he got exactly the same answer for the time delay as the GR calculation. 

NOTE: I also got exactly the same answer if I changed the sign of the Sun’s spatial flow velocity – i.e. if I 
turned the sun into a spatial source rather than a sink. 

Mathematica filename: “shapiroGPScalculationModifiedForShapiro.nb” 
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